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ABSTRACT  

In this paper we prove some common fixed point theorems for compatible mappings of type (A-1) in complete 

fuzzy metric space our result improves the result of Khan, M.S. [8]. 
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INTRODUCTION 

The first important result in the theory of fixed point of compatible mapping was obtained by Gerald Jungck in 

1986[6] as a generalization of commuting mapping. In 1993 Jungck and Cho [7] introduced the concept of, Compatible 

mappings of type (A) by generalizing the definition of weakly uniformly contraction maps. Pathak and Khan [12] 

introduced the concept of type A-compatible and S-compatible by splitting the definition of compatible mapping of type 

(A).Pathak et.al. [8] renamed A-compatible and S-compatible as compatible mappings of and type(A-1) and compatible 

mappings of type(A-2) respectively and introduced it in fuzzy metric space. 

Zadeh [16] introduced the concept of fuzzy sets. The idea of fuzzy metric space was introduced by Kramosil and 

Michalek [11] which was modified by George and Veernmani [2, 3]. Singh B. and M.S. Chauhan [14] introduced the 

concept of compatibility in fuzzy metic space and proved some common fixed point theorems in fuzzy metric spaces in the 

sense of George and Veermani with continuous t-norm * defined by a*b = min { a, b} for all a, b ∈ [0,1]. 

The aim of the paper is to prove some common fixed point theorems of compatible mappings of type (A-1).              

These results modify and extend the result in [8, 12, 15]. 

PRELIMINARIES 

Definition 2.1[13] A Binary Operation*:  [0, 1] × [0, 1] → [0, 1] is called a continuous t-norm if, it satisfies the following 

conditions: 

• *is associative and commutative 

• *is continuous 
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• a* 1 = a, for all a ∈ [0, 1] 

• a * b ≤ c * d whenever a ≤ c and b ≤ d, for all a, b, c, d in [0, 1] 

Definition 2.2[2]:  3-tuple (X, M, *) is called a fuzzy metric space if X is an arbitrary (non-empty), * is 

continuous t-norm, and M is a Fuzzy set on X2 × (0, ∞) satisfying the following conditions: 

• M(x, y, t) > 0. 

• M(x, y, t) = 1 if and only if x = y. 

• M(x, y, t) = M(y, x, t). 

• M(x, y, t)* M(y, z, s) ≤M(x, z, t + s) 

• M(x, y,): (0, ∞)→[0,1] is continuous. 

• For all x, y, z ∈X and s, t > 0. 

Let (X, d) be a metric space, and let a*b = min {a, b}. Let M (x, y, t) = 
(x, y)

t

t d+
 for all x, y ∈ X and t >0.               

Then (X, M, *) is a fuzzy metric M induced by d is called standard fuzzy metric space [3]. 

Definition 2.3[4]: A sequence [xn] in a fuzzy metric space (X, M, *) is said to be convergent to a point x in X               

(denoted by limn→∞ xn= x), if for each ε > 0 and each t > 0, there exists n0 ∈ N such that  

M (xn, x, t)> 1-ε for all n ≥ n0. 

The completeness and non completeness of fuzzy metric space was discussed in George and Veeramani [3] and 

M. Grabiec [5]. 

Definition 2.4[2]: A sequence {xn} in a fuzzy metric space (X, M, *) is called Cauchy sequence if for each ε>0 

and each t>0, there exists n0 ∈ N such that M (xn, xm, t) > 1- ε for all n, m ≥ n0. 

Definition  2.5[8]: Two self mapping A and S of a fuzzy metric space (X, M, *) are said to be compatible,                                 

if lim n→∞ M (ASxn, SAxn, t) = 1 whenever {xn} is a sequence such that 

limn→∞ Axn = limn→∞Sxn= z, for some zin X. 

Definition  2.6[7]: Self mappings A and S of a fuzzy metric space (X, M, *) are said to be compatible of type (A) 

if lim n→∞M (ASxn, SSxn, t) = limn→∞M (SAxn, AAxn, t) = 1 for all t > 0,whenever {xn}is a sequence in X such that                 

limn→∞ Axn = limn→∞Sxn= z, for some z ∈ X. 

Definition  2.7[8]: Self mappings A and S of a fuzzy metric space (X, M, *) are said to be compatible of type                

(A-1) if limn→∞M (SAxn, AAxn, t) = 1 for all t > 0 whenever {xn}is a sequence in X such that 

limn→∞ Axn = limn→∞Sxn= z, for some z ∈ X.  

Lemma 2.8[4]: Let (X, M, *) be a fuzzy metric space. Then for all x, y in X, M (x, y, *) is non-decreasing. 

Lemma 2.9[4]: Let (X, M, *) be a fuzzy metric space. If there exists q ∈ (0, 1) such that  
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M (x, y, qt) M (x, y, t/q) for positive integer n. Taking limit as n→ ∞M(x, y, t) ≥ 1 and hence x = y. 

Lemma 2.10[10]: The only t-norm * satisfying s*s ≥ s for all s ∈ [0, 1], is the minimum t-norm, that is, 

a* b = min {a, b} for all a, b [0,1].  

Proposition 2.11[7]: Let (X, M, *) be a fuzzy metric space and let A and S be continuous mappings of X then A 

and S are compatible if and only if they are compatible of type (A).  

Proposition 2.12[8]: Let (X, M, *) be a fuzzy metric space and let A and S be compatible mappings of type (A-1) 

and Az= Sz for some z ∈ X, then SAz=AA z.  

Proposition 2.13[8]: Let (X, M, *) be a fuzzy metric space and let A and S be compatible mappings of type (A-1) 

and Az = Sz for some z ∈X, then ASz = SSz. 

Proposition 2.14[8]: Let (X, M, *) be a fuzzy metric space and let A and S be compatible mappings of type (A-1) 

and let Axn, Sxn → z as n→∞ for some x ∈ X then AA xn→ Sz if S is continuous at z. 

MAIN RESULTS 

We prove the following theorem. 

Theorem 3.1: Let (X, M, *) be a complete fuzzy metric space and let P, Q, S and T be a self mappings of X 

satisfying the following conditions:  

• P(X) ⊂ T(X), Q(X) ⊂ S(X), 

• S and T are continuous. 

• The pairs {P, S} and {Q, T} are compatible mapping of type (A-1) on X. 

• There exists k ∈ (0, 1) such that for every x, y ∈ X and t > 0, 

M(Px, Qy, kt) ≥M (Sx, Ty, t) *M (Px, Sx, t) *M (Qy, Ty, t) *M (Px, Ty, t)  

Then P, Q, S and T have a unique common fixed point in X. 

Proof: Since P(X) ⊂ T(X) and Q(X) ⊂ S(X) for any x0 ∈ X, there exists x1 ∈ X such that P x0 = T x1 

And for this x1 ∈ X, y2n-1 = Tx2n-1 = Ax2n-2 and y2n = Sx2n = Bx2n-1, for all n = 0, 1, 2,……. 

From (iv), M (y2n+1, y2n+2, kt) = M (Px2n, Qx2n+1, kt). 

≥M (Sx2n, Tx2n+1, t) *M (Px2n, Sx2n, t) *M (Qx2n+1, Tx2n+1, t) *M (Px2n, Tx2n+1, t)  

=M (y2n, y2n+1, t) *M (y2n+1, y2n, t) *M (y2n+2, y2n+1, t) *M (y2n+1, y2n+1, t)  

≥M (y2n, y2n+1, t) *M (y2n+1, y2n+2, t)  

From lemma 2.9 and 2.10, We have  

M (y2n+1, y2n+2, kt) ≥ M (y2n, y2n+1, t)                                                                                                                         (1)  

Similarly, we have 
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M (y2n+2, y2n+3, kt) ≥ M (y2n+1, y2n+2, t)                                                                                                                      (2) 

From (1) and (2), we have 

M (yn+1, yn+2, kt) ≥ M (yn, yn+1, t)                                                                                                                              (3) 

M (yn, yn+1, t) ≥ M (yn, yn-1, t/k) 

≥ M (yn+2, yn-1, t/k
2) 

≥ ……………….≥ M (y1, y2, t/k
n) → 1 as n→∞. 

So M (yn, yn+1, t) → 1 as n→∞ for any t > 0. For each ε > 0 and each t > 0, we can choose n0 ∈ N such that                  

M (yn, yn+1, t) > 1-ε for all n > n0. 

For m, n ∈ N we suppose m ≥ n. Then we have that 

M (yn, ym, t) ≥M (yn, yn+1, 
t

m n−
) *M (yn+1, yn+2,

t

m n−
)*…… M (ym-1, ym,

t

m n−
) 

≥ (1-ε)* (1-ε)*……………….. (m-n) times. 

≥ (1-ε) 

And hence {yn} is a Cauchy sequence in X. 

Since (X, M, *) is complete, {yn} converges to some point z∈ X, and so  

{Px2n-2}, {Sx2n}, {Qx 2n-1} and {Tx2n-1} also converges to z. 

From proposition 2.15 and (iii), we have 

PPx2n-2 → Sz                                                                                                                                                             (4) 

and QQx2n-1→ Tz                                                                                                                                                      (5) 

Now, from (iv), we get 

M (PPx2n-2, QQx2n-1, kt) ≥M (SPx2n-2, TQx2n-1, t) *M (PPx2n-2, SPx2n-2, t) *M (QQx2n-1, TQx2n-1, t)                                        

*M (PPx2n-2, TQx2n-1, t)  

Taking limit as n→∞ and using (4) and (5) we have  

M (Sz, Tz, kt) ≥M (Sz, Tz, t) *M (Sz, Sz, t) *M (Tz, Tz, t) *M (Sz, Tz, t)  

≥M (Sz, Tz, t) *1 *M (Sz, Tz, t)  

≥ M (Sz, Tz, t) 

It follows that Sz = Tz                                                                                                                                              (6)  

Now from (iv) 

M (Pz, QQ2n-1, kt) ≥M (Sz, TQx2n-1, t) *M (Pz, Sz, t) *M (QQx2n-1, TQx2n-1, t) *M (PPx2n-2, TQx2n-1, t)  

Again taking limit n → ∞ and using (5) and (6), we have 
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M (Pz, Tz, kt) ≥M (Sz, Sz, t) *M (Pz, Tz, t) *M (Pz, Tz, t) *M (Pz, Tz, t)  

≥M (Pz, Tz, t) 

And hence Pz =Tz (3.1.7) 

From (iv), (6) and (3.1.7) 

M (Pz, Qz, kt) ≥M (Sz, Tz, t) *M (Pz, Sz, t) *M (Qz, Tz, t) *M (Pz, Tz, t)  

 = M (Pz, Pz, t) *M (Pz, Pz, t) *M (Qz, Pz, t) *M (Pz, Pz, t)  

 ≥ M (Pz, Qz, t). 

And hence Pz =Qz. (3.1.8) 

From (6), (3.1.7) and (3.1.8), we have 

Pz = Qz = Tz = Sz. (3.1.9) 

Now, we show that Qz = z. 

From (iv), 

M (Px2n, Qz, kt) ≥M (Sx2n, Tz, t) *M (Px2n, Sx2n, t) *M (Qz, Tz, t) *M (Px2n, Tz, t)  

And, taking limit as n →∞ and using (6) and (3.1.7), we have  

M (z, Qz, kt) ≥M (z, Tz, t) *M (z, z, t) *M (Qz, Tz, t) *M (z, Tz, t)  

                                    = M (z, Qz, t) *1 *M (Qz, Qz, t) *M (z, Qz, t)  

         ≥ M (z, Bz, t).  

And hence Qz = z. Thus from (3.1.9), z = Pz = Q z = Tz = Sz and z is a common fixed point of P, Q, S and T.  

In order to prove the uniqueness of fixed point, let w be another common fixed point of P, Q, S and T. Then 

M (z, w, kt) = M (Pz, Qw, kt) 

      ≥M (Sz, Tw, t) *M (Pz, Sz, t) *M (Qw, Tw, t) *M (Pz, Tw, t)  

            ≥M (z, w, t).  

From lemma 2.10, z = w. This completes the proof of theorem. 

Corollary 3.2: Let (X, M, *) be a complete fuzzy metric space and let P, Q, S and T be a self mappings of X 

satisfying (i) - (iii) of theorem 3.1 and there exists k ∈ (0,1) such that 

M (Px, Qy, kt) ≥M (Sx, Ty, t) *M (Px, Sx, t) *M (Qy, Ty, t) *M (Qy, Sx, 2t) *M (Px, Ty, t)  

for every x, y ∈ X and t >0. Then P, Q, S and T have a unique common point in X. 

Corollary 3.3: Let (X, M, *) be a complete fuzzy metric space and let P, Q, S and T be a self mappings of X 

satisfying (i) - (iii) of theorem 3.1 and there exists k ∈ (0, 1) such that M (Px, Qy, kt) ≥M (Sx, Ty, t) for every x, y ∈ X and 

t >0. Then P, Q, S and T have a unique common point in X. 
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Corrolary 3.4: Let (X, M, *) be a complete fuzzy metric space and let A, B, S and T be a self mappings of X 

satisfying (i) - (iii) of theorem 3.1 and there exists k ∈ (0,1) such that 

M (Px, Qy, kt) ≥M (Sx, Ty, t) *M (Sx, Px, t) *M (Px, Ty, t), 

for every x, y ∈ X and t >0. Then P, Q, S and T have a unique common point in X. 

Corollary 3.5: Let (X, M, *) be a complete fuzzy metric space. Then continuous self mappings S and T of X have 

a common fixed point in X if and only if there exists a self mapping P of X such that the following condition are satisfied : 

• P(X) ⊂ T(X) ∩ S(X), 

• The pair {P, S} and {P, T} are compatible mapping of type (A-1) on X. 

• There exists k ∈ (0, 1) such that for every x, y ∈ X and t >0 

M (Px, Py, kt) ≥M (Sx, Ty, t) *M (Px, Sx, t) *M (Qy, Ty, t) *M (P x, Ty, t). 

In fact, P, S and T have a unique common fixed point in X. 

Proof: We shown that the necessity of the conditions (i) - (iii). Suppose that S and T have a common fixed point 

in X, say z. Then Sz = z = Tz. 

Let Px = z for all x ∈ X. Then we have P(X) ⊂ T(X) ∩ S(X), and we know that [P, S] and [P, T] are compatible 

mapping of type (A-1), in fact PoS = SoP and PoT = ToP, and hence the conditions (i) and (ii) are satisfied.  

For some k ∈ (0, 1), we get M (Px, Py, kt) = 1 ≥ M (Sx, Ty, t) *M (Px, Sx, t) *M (Py, Ty, t) *M (Px, Ty, t). 

for every x, y ∈ X and t >0 and hence the condition (iii) is satisfied. 

Now, for the sufficiency of the conditions, let P = Q in theorem 3.1. Then P, S and T have a unique common fixed 

point in X. 

In fact, P, S and T have a unique common fixed point in X. 

Corollary 3.6: Let (X, M, *) be a complete fuzzy metric space. Then continuous self mappings S and T of X have 

a common fixed point in X if and only if there exists a self mapping P of X satisfying (i) – (ii) of theorem 3.5 and there 

exists a self mapping of X satisfying (i) - (iii) of theorem 3.5 and there exists k ∈ (0, 1) such that for every x, y ∈ X and                    

t >0 

M (Px, Py, kt) ≥M (Sx, Ty, t) *M (Px, Sx, t) *M (Py, Ty, t) *M (Px, Sx, t) *M (Px, Ty, t). 

Corollary 3.7: Let (X, M, *) be a complete fuzzy metric space. Then continuous self mappings S and T of X have 

a common fixed point in X if and only if there exists a self mapping P of X satisfying (i) - (ii) of theorem 3.5 and there 

exists a self mapping of X satisfying (i) - (iii) of theorem 3.5 and there exists k ∈ (0, 1) such that for every x, y ∈ X and               

t >0 

M (Px, Py, kt) ≥M (Sx, Ty, t). 

In fact, P, S and T have a unique common fixed point in X. 
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Corollary 3.8: Let (X, M, *) be a complete fuzzy metric space. Then continuous self mappings S and T of X have 

a common fixed point in X if and only if there exists a self mapping P of X satisfying (i) - (ii) of theorem 3.5 and there 

exists a self mapping of X satisfying (i) - (iii) of theorem 3.5 and there exists k ∈ (0, 1) such that for every x, y ∈ X and               

t >0 

M (Px, Py, kt) ≥M (Sx, Ty, t) *M (Sx, Px, t) *M (Px, Ty, t). 

In fact, P, S and T have a unique common fixed point in X. 
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