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ABSTRACT

In this paper we prove some common fixed point thes for compatible mappings of type (A-1) in coetel
fuzzy metric space our result improves the redutt@an, M.S. [8].
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INTRODUCTION

The first important result in the theory of fixedipt of compatible mapping was obtained by Geraldggk in
1986[6] as a generalization of commuting mappimg1993 Jungck and Cho [7] introduced the concepCompatible
mappings of type (A) by generalizing the definitiofi weakly uniformly contraction maps. Pathak anHaK [12]
introduced the concept of type A-compatible ando8yeatible by splitting the definition of compatilieapping of type
(A).Pathak et.al. [8] renamed A-compatible and Bipatible as compatible mappings of and type(A-1J eompatible
mappings of type(A-2) respectively and introdudeid fuzzy metric space.

Zadeh [16] introduced the concept of fuzzy sets itlea of fuzzy metric space was introduced by Kisihand
Michalek [11] which was modified by George and \femani [2, 3]. Singh B. and M.S. Chauhan [14] introeld the
concept of compatibility in fuzzy metic space amdyed some common fixed point theorems in fuzzyrimepaces in the

sense of George and Veermani with continuous t-natefined by & = min { a, b} for all a, b= [0,1].

The aim of the paper is to prove some common figeuht theorems of compatible mappings of type (A-1)
These results modify and extend the result in £8,1B].

PRELIMINARIES

Definition 2.1[13] A Binary Operation*: [0, 1] x [0, 1]— [0, 1] is called a continuous t-norm if, it saigésf the following
conditions:

* *is associative and commutative

e  *is continuous
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e a*l=a,forall & [0, 1]
* a*b<c*dwhenever&candh<d,foralla,b,c,din[0,1]

Definition 2.2[2]: 3-tuple (X, M, *) is called a fuzzy metric space Xf is an arbitrary (non-empty), * is

continuous t-norm, and M is a Fuzzy set drxX0, ) satisfying the following conditions:
e M(Xy,t)>0.
e MKy t)=1lifandonlyifx=y.
o M(X, Y, t) = M(y, X, t).
© MKy, )* M(y, z, $)<M(x, z, t + 5)
*  M(X,Y,): (0,0)—[0,1] is continuous.

e Forallx,y, zeXands,t>0.

t
Let (X, d) be a metric space, and leb & min {a, b}. Let M (X, y, t) =—— for all x, ye X and t >0.
t+d(x,y)

Then (X, M, *) is a fuzzy metric M induced by ddalled standard fuzzy metric space [3].

Definition 2.3[4]: A sequence [} in a fuzzy metric space (X, M, *) is said to bengergent to a point x in X

(denoted by lim..., x,= X), if for eache > 0 and each t > 0, there exisgsenN such that
M (X, X, t)> 1€ for all n> n,.

The completeness and non completeness of fuzzyorspiace was discussed in George and Veeramaan[B]
M. Grabiec [5].

Definition 2.4[2]: A sequence {§ in a fuzzy metric space (X, M, *) is called Caycbkequence if for eactr0

and each t>0, there existge@N such that M (% X, t) > 1-¢ for all n, m> n,.

Definition 2.5[8]: Two self mapping A and S of a fuzzy metric spake i, *) are said to be compatible,
if lim,_., M (ASx,, SAX, t) = 1 whenever { is a sequence such that

lim,_. AX,=lim,...Sx= z, for some zin X.

Definition 2.6[7]: Self mappings A and S of a fuzzy metric space (XMare said to be compatible of type (A)
if limp_.M (ASX, SSx t) = lim_,M (SAX, AAx, t) = 1 for all t > 0,whenever {}is a sequence in X such that

liM_ AXy =lim,..SX= z, for some £ X.

Definition 2.7[8]: Self mappings A and S of a fuzzy metric spaceNX,*) are said to be compatible of type
(A-1) if lim .M (SAX,, AAX, t) = 1 for all t > 0 whenever {}is a sequence in X such that

M AXp =lim,..SX= z, for some £ X.
Lemma 2.8[4]: Let (X, M, *) be a fuzzy metric space. Then forxly in X, M (x, y, *) is non-decreasing.

Lemma 2.9[4]: Let (X, M, *) be a fuzzy metric space. If there exigts (0, 1) such that
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M (%, y, gt) M (x, y, t/q) for positive integer n. Taking limit asnooM(x, y, t)> 1 and hence = y.
Lemma 2.10[10]: The onlyt-norm * satisfyings*s> sfor all s €[0, 1], is the minimunt-norm, that is,
a* b=min {a, b} for all a, b[0,1].

Proposition 2.11[7]: Let (X, M, *) be a fuzzy metric space and fetand S be continuous mappings #fthenA
andSare compatible if and only if they are compatibi¢ype (A).

Proposition 2.12[8]: Let (X, M, *) be a fuzzy metric space and FeandSbe compatible mappings of type (A-1)
andAz= Szfor somez € X, thenSAZ=AA z

Proposition 2.13[8]: Let (X, M, *) be a fuzzy metric space and feandSbe compatible mappings of type (A-1)
andAz = Szfor somez €X, thenASz = Sz

Proposition 2.14[8]: Let (X, M, *) be a fuzzy metric space and feandSbe compatible mappings of type (A-1)

and let Ax, Sx, — z as a»o for some xe X then AA x— Sz if S is continuous at z.
MAIN RESULTS
We prove the following theorem.

Theorem 3.1:Let (X, M, *) be a complete fuzzy metric space dedP, Q, S and T be a self mappings of X
satisfying the following conditions:

« P(X) LUT(X), Q(X) LIS(X),
* SandT are continuous.
* The pairs {P, S} and {Q, T} are compatible mappofgype (A-1) on X.
e There exists le (0, 1) such that for every x,eX and t > 0,
M(Px, Qy, kt) >M (S, Ty, t) *M (Px, X, t) *M (Qy, Ty, t) *M (Px, Ty, t)
Then P, Q, S and T have a unique common fixed poixt
Proof: Since P(X)LJ T(X) and Q(X) L1 S(X) for any x € X, there exists x€ X such that P g T x;
And for thisx; € X, Yon.1 = TXon.1 = AXonoand ¥, = S¥, = Bxong, foralln=0, 1, 2,.......
From (iv), M (on+1, Yone2 kt) =M (P%n, QXons, kt).
=M (Sx2n, T%nsy, 1) *M (PXan, S¥en, 1) *M (QXzne1, TXones, 1) *M (PXon, TXonsy, 1)
=M (Yan, Yan+1, 1) *M (Yanes, Yon, 1) *M (Yanez Yones, 1) *M (Yones, Yones, 1)
=M (Yan, Yan+1, £) *M (Yanss, Yonea 1)
From lemma 2.9 and 2.10, We have

M (y2n+11 Yon+2s kt) Z M (y2n1 Yon+1s t) (1)

Similarly, we have
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M (Yan+2 Yan+a Kt) =M (Yans, Yonsa 1) (2)
From (1) and (2), we have
M (Yns1, Ysz, KE) =M (Y, Yo, 1) ®3)
M (Y Ynes, )= M (Yo Y1, UVK)

> M (Ynsz, Yos, 1K)

> > M (Y1, Yo, t/K") — 1 as R,

SO0 M (W Ve, t) — 1 as r>oo for any t > 0. For each > 0 and each t > 0, we can chooge& M such that

M (Yn, Yns1, £) > 1€ for all n > ny,

For m, ne N we suppose m n. Then we have that

t t
) *M Vet Yoz — )% M (Ym-1 Y —)
m-n m-n m-n

M (an Yms t) EM (Yna Yn+1s

> (Le)* (1-)* e, (m-n) times.
> (1)
And hence {y} is a Cauchy sequence in X.
Since (X, M, *) is complete, {§} converges to some poinEzx, and so
{PX2an-23, {SXan}, {QX 2n-1} @nd {TXzn.13also converges to z.
From proposition 2.15 and (iii), we have
PPx%,,— Sz (4)
and QQx%n..— Tz (5)
Now, from (iv), we get

M (PPx%n2 QQX%ni kt) >M (SPX%nz TQXn1 t) *M (PPXnas SPX%na t) *M (QQXen1 TQXna, 1)
*M (PPXon.2, TQXon.1, 1)

Taking limit as R»o0 and using (4) and (5) we have
M (Sz, Tz, kt>M (Sz, Tz, t) *M (Sz, Sz, t) *M (Tz, Tz, t) *M (SZz, t)
>M (Sz, Tz, t) *1 *M (Sz, Tz, t)
>M (Sz, Tz, 1)
It follows that Sz = Tz (6)
Now from (iv)
M (Pz, QQn.y, kt) =M (Sz, TQ%n.1, 1) *M (PZ, Sz, 1) *M (QQ¥%n.1, TQ%n-1, 1) *M (PPXen.s TQ¥n.1, 1)

Again taking limit n— o0 and using (5) and (6), we have
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M (Pz, Tz, kty>M (Sz, Sz, t) *M (Pz, Tz, t) *M (Pz, Tz, t) *M (P4,z, t)
>M (Pz, Tz, t)
And hence Pz =Tz (3.1.7)
From (iv), (6) and (3.1.7)
M (Pz, Qz, kt>M (Sz, Tz, t) *M (Pz, Sz, t) *M (Qz, Tz, t) *M (PZ,z, t)
=M (Pz, Pz, t) *M (Pz, Pz, t) *M (Qz, Pz, t) *MPg, Pz, t)
>M (Pz, Qz, t).
And hence Pz =Qz. (3.1.8)
From (6), (3.1.7) and (3.1.8), we have
Pz=Qz=Tz=5z.(3.1.9)
Now, we show that Qz = z.
From (iv),
M (PXon, Qz, kt)>M (Sxon, TZ, t) *M (PXn, S¥%n, t) *M (Qz, Tz, t) *M (PX%y, Tz, t)
And, taking limit as n—~o and using (6) and (3.1.7), we have
M (z, Qz, kt)=M (z, Tz, t) *M (z, z, t) *M (Qz, Tz, t) *M (z, Tzt)
=M (z, Qz*) *M (Qz, Qz, t) *M (z, Qz, t)
> M (z, Bz, t).
And hence Qz = z. Thus from (3.1.9), z = Pz = QTz= Sz and z is a common fixed point of P, Qn& &a.
In order to prove the uniqueness of fixed poirttiwéde another common fixed point of P, Q, S an@fen
M (z, w, kt) =M (Pz, Qw, kt)
>M (Sz, Tw, t) *M (Pz, Sz, t) *M (Qw, Tw, t) *M (PZTw, t)
>M (z, w, t).
From lemma 2.10, z = w. This completes the prodhebrem.

Corollary 3.2: Let (X, M, *) be a complete fuzzy metric space dedP, Q, S and T be a self mappings of X
satisfying (i) - (iii) of theorem 3.1 and there stsi ke (0,1) such that

M (Px, Qy, kt)>M (Sx, Ty, t) *M (Px, Sx, t) *M (Qy, Ty, t) *M (QySx, 2t) *M (Px, Ty, t)
for every x, ye X and t >0. Then P, Q, S and T have a unique cammpaint in X.

Corollary 3.3: Let (X, M, *) be a complete fuzzy metric space detdP, Q, S and T be a self mappings of X
satisfying (i) - (iii) of theorem 3.1 and there stsi ke (0, 1) such that M (Px, Qy, k&M (Sx, Ty, t) for every x, ¥ X and
t>0. Then P, Q, S and T have a unique common poixt
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Corrolary 3.4: Let (X, M, *) be a complete fuzzy metric space a@dA, B, S and T be a self mappings of X
satisfying (i) - (iii) of theorem 3.1 and there stsi ke (0,1) such that

M (Px, Qy, kt)>M (Sx, Ty, t) *M (Sx, Px, t) *M (Px, Ty, t),
for every x, ye X and t >0. Then P, Q, S and T have a unique campaint in X.

Corollary 3.5: Let (X, M, *) be a complete fuzzy metric space. file®ntinuous self mappings S and T of X have

a common fixed point in X if and only if there esis@ self mapping P of X such that the followingdition are satisfied :
« PX) UT1(x) ns(x),
e The pair {P, S} and {P, T} are compatible mappirfgype (A-1) on X.
* There exists ke (0, 1) such that for every x,& X and t >0
M (Px, Py, kt>M (Sx, Ty, t) *M (Px, Sx, t) *M (Qy, Ty, t) *M (P xTy, t).
In fact, P, S and T have a unique common fixedtgdaiix.

Proof: We shown that the necessity of the conditions (iij). Suppose that S and T have a common fixethip

in X,say z. Then Sz=z=Tz.

Let Px = z for all x¢ X. Then we have P(X) T(x) N S(X), and we know that [P, S] and [P, T] are cotifype
mapping of type (A-1), in fact PoS = SoP and Pallo®, and hence the conditions (i) and (ii) aresfiat.

For some ke (0, 1), we get M (Px, Py, kt) =AM (Sx, Ty, t) *M (Px, Sx, t) *M (Py, Ty, t) *M (PxTy, t).
for every x, ye X and t >0 and hence the condition (iii) is sétidf

Now, for the sufficiency of the conditions, IBt= Q in theorem 3.1. TheR, SandT have a unique common fixed

point in X.
In fact, P, S and T have a unique common fixedtgdaiix.

Corollary 3.6: Let (X, M, *) be a complete fuzzy metric space. file®ntinuous self mappings S and T of X have
a common fixed point in X if and only if there etsis self mapping P of X satisfying (i) — (ii) dfeorem 3.5 and there
exists a self mapping of X satisfying (i) - (iiif theorem 3.5 and there exist€k0, 1) such that for every x,& X and
t>0

M (Px, Py, kt)>M (Sx, Ty, t) *M (Px, Sx, t) *M (Py, Ty, t) *M (PxSx, t) *M (Px, Ty, 1).

Corollary 3.7: Let (X, M, *) be a complete fuzzy metric space. file®ntinuous self mappings S and T of X have
a common fixed point in X if and only if there etsisa self mapping P of X satisfying (i) - (ii) dfe¢orem 3.5 and there
exists a self mapping of X satisfying (i) - (iiif theorem 3.5 and there exist€k0, 1) such that for every x,& X and
t>0

M (Px, Py, kt)>M (Sx, Ty, t).

In fact, P, S and T have a unique common fixedtgaiix.
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Corollary 3.8: Let (X, M, *) be a complete fuzzy metric space. file®ntinuous self mappings S and T of X have

a common fixed point in X if and only if there etsisa self mapping P of X satisfying (i) - (ii) dfe¢orem 3.5 and there

exists a self mapping of X satisfying (i) - (iiif theorem 3.5 and there exist€k0, 1) such that for every x,& X and

t>0
M (Px, Py, kt)>M (Sx, Ty, t) *M (Sx, Px, t) *M (Px, Ty, t).
In fact, P, S and T have a unique common fixedtgdaiix.
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